Numerical Analysis of the Effect of Stator Hydrofoil Cord Length on Hydrodynamic Performance of Preswirl Pump Jet Propulsion

Document Type : Original Article

Authors

Department of Mechanical Engineering, Malek Ashtar University of Technology, Isfahan, Iran

Abstract

Pump jet is a type of marine propulsion system that establishes the necessary trust based on the momentum difference method and based on axial flow pumps. The pump jet system is composed of rotors, stators, ducts and hubs. In the last two decades, pump jet propulsion system due to higher efficiency and performance, as well as lower noise level, has been more important for marine industry, especially in the subsurface area. In this paper, the effect of stator hydrofoil chords length on the hydrodynamic performance of the stator-rotor pump jet has been investigated. The stator has an integral role in this type of pump jet and has a significant role on the hydrodynamic performance of the propulsion complex. Therefore, 5 geometries with the length of the stator cords L (DR 0.14, 0.15DR, 0.16DR, 0.17DR and 0.18DR) (rotor diameter: DR) were produced by direct design method to investigate computational fluid dynamics and numerical simulation using commercial software. Among the investigated cases, the maximum open water efficiency (64.51) was related to L=0.18 DR and the minimum open water efficiency was related to L=0.15 DR (63.53). By examining the other results of the simulations, it seems that L=0.18DR is superior to other scenarios due to having maximum open water efficiency (about 1% higher than the lowest value) and the larger coverage area of the leading coefficients with higher efficiency, uniformity and monotrend of the production trust coefficient and conventional torque coefficient graph.

Keywords

Main Subjects


[1] Gaggero S., "Design and analysis of pumpjet propulsors using CFD-based optimization", Ocean Engineering Volume 227, 1 October. https://doi.org/10.1016/j.oceaneng.2023.114304.##[2] Sun D., "Tip vortex control effect and open-water performance of grooves in a pumpjet propulsor”, Harbin Gongcheng Daxue, Volume 44. https://doi.org/10.1051/matecconf/201816703006.##[3] Ye J.M., "Hydrodynamic study of pumpjet propulsor with a ring at rotor tip and embedded in the groove of the inner wall of the duct", Chuan Bo Li Xue/Journal of Ship Mechanics, Volume 27. https://doi.org/10.3390/jmse11101926.##[4] Ku G., "Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion", Journal of the Acoustical Society of Korea, Volume 42 doi:10.7776/ASK.2023.42.3.250.##[5] Ye J.m., "Tip flow control performance and mechanism of axial slots in a pumpjet propulsor", Ocean Engineering, Volume 226 https://doi.org/10.1016/j.oceaneng.2022.112950.##[6] Jong-Woo Ahn, Han-Shin Seol, Hong-Seok Jung, Young-Ha Park: Study of the Open-Water Test and Analysis for a Pumpjet Propulsor in LCT. Journal of the Society of Naval Architects of KoreaVol. 59, No. 3, pp. 149-156, June 2022 https://doi.org/10.3744/SNAK.2022.59.3.149.##[7] Yunkai Zhou, Giorgio Pavesi, Jianping Yuan and Yanxia Fu, A Review on Hydrodynamic Performance and Design of Pump-Jet: Advances, Challenges and Prospects, Journal of Marine Science and Technology, 10, 1514 (2022). https://doi.org/10.3390/jmse10101514##[8] Yari E., Numerical Analysis of Hydrodynamic-Structural and Vibration of PumpJet Propulsion System of AUV, INTERNATIONAL JOURNAL OF MARITIME TECHNOLOGY, 16 (2021). http://ijmt.ir/article-1-765-en.html##[9] طراحی سیستم رانش پمپ‌جت CRP، نوروزمحمد نوری، صابر محمدی، اولین همایش پیشرانه‌های دریایی##[10] شبیه‌سازی عددی دنباله جریان پشت سیستم رانش پمپ‌جت، امین طالع زاده شیرازی، محمدرضا نظری، مجتبی دهقان منشادی، هجدهمین همایش صنایع دریایی##[11] استخراج منحنی عملکرد یک نمونه تحقیقاتی سیستم پیشرانش پمپ‌جت، امین طالع زاده شیرازی، محمدرضا نظری، مجتبی دهقان منشادی، هجدهمین همایش صنایع دریایی##[12] مطالعه سیستم رانش پمپ‌جت و امکان‌سنجی استفاده از آن در شناورهای سرعت‌بالا، مهران مطلبی نژاد، حسن قاسمی، چهارمین همایش ملی شناورهای تندرو##[13] Report of the propulsor Committee, (1992),” Workshop Organized by 20th ITTC Propulsor”, 23 August, Seoul Korea.##[14] Roache, P. J.: Quantification of uncertainty in computational fluid dynamics. Annual review of fluid Mechanics, 29, 123-160 (1997).##[15] Carlton, J. S., Marine propellers and propulsion, third ed., Amsterdam, Netherland, Elsevier (2012)##[16] Dawson, C.: The early history of water - jet propulsion. MARINERS MIRROR, 89, 88-92(2003)##[17] Bertram, V., Practical ship hydrodynamics Oxford, U.K, Butterworth Heinemann (2012)##[18] Suryanarayana, C., Rao, M. N., Raju, P. N., Balakrishan, T., and Lambada, S.: Torque Balance and Cavitation Studies on Underwater Vehicle Propulsion System. International Journal of Innovative Research and Development, 1, 62-73 (2012)