تأثیر مشخصه‌های سینماتیکی در برخورد ورق الاستیک با آب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری دانشگاه صنعتی امیرکبیر، تهران 15914، ایران

2 دانشیار، دانشکده مهندسی دریا، دانشگاه صنعتی امیرکبیر، تهران 15914، ایران

3 استاد، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران 11115-8639

چکیده

نیروی برخورد با آب ناشی از اسلمینگ یکی از نیروهای مهمی است که ممکن است پاسخ هیدروالاستیک سازه شناور به آن قابل توجه باشد. مدل کردن این پدیده و اندرکنش متقابل نیرو هیدرودینامیکی و تغییرشکل سازه از مسائل چالشی در سازه‌های دریایی و نشست روی آب وسایل پروازی است. در این مقاله، با استفاده از مدل هیدروالاستیک موجود که برای برخورد ورق با آب ارائه شده است اثر مشخصه‌های سینماتیکی شامل سرعت‌های عمودی، زاویه‌ای و افقی و همچنین زاویه شیب، بر پاسخ هیدروالاستیک ورق بررسی می‌شود. علاوه بر آن، با استفاده از پارامترهای بدون‌بعد بدست آمده از مشخصه-های سینماتیکی، شرایطی که اثر سرعت افقی و زاویه شیب در برخورد مایل ورق با آب ناچیز است، تعیین گردید. در این شرایط برخورد ورق به سمت برخورد قائم با زاویه شیب صفر میل می‌کند. یافته‌ها نشان می‌دهد که در هر دو برخورد عمودی و مایل، افزایش سرعت عمودی پریود نوسانات را کم می‌کند و رابطه ماکزیمم تغییرشکل با سرعت عمودی و سرعت زاویه‌ای بصورت خطی است.

تازه های تحقیق

 

کلیدواژه‌ها


 

[1] Bishop, R. E. D., and Price, W., "Hydroelasticity of ships," Cambridge University Press, 1979.

[2] Kashiwagi, M., "Research on hydroelastic responses of VLFS: recent progress and future work," International Journal of Offshore and Polar Engineering, Vol. 10, No. 02, 2000.

[3] Faltinsen, O. M., "Hydroelastic slamming," Journal of Marine Science and Technology, Vol. 5, No. 2, 2000, pp. 49-65.

[4] Faltinsen, O. M., "Hydrodynamics of high-speed marine vehicles." Cambridge university press, 2005.

[5] Piro, D. J., "A hydroelastic method for the analysis of global ship response due to slamming events," 2013.

[6] Povitsky, A., "Seaplane landing impact," Tr. Tsentr. Aerodin. Inst. (Moscow), Vol. 199, 1935, pp. 1-17.

[7] Meyerhoff, W. K., "Die berechnung hydroelastischer Stöße," 1965.

[8] Gorshkov A., and Vakalov, G., "Penetration of an elastic wedge into an incompressible liquid," International Applied Mechanics, Vol. 16, No. 9, 1980, pp. 831-835.

[9] Vasin, A., "Hydroelastic interaction of a wedge-shaped construction enteringa liquid," Fluid dynamics, Vol. 28, No. 3, 1993, pp. 387-392.

[10] Faltinsen, O. M., Kvålsvold, J., and Aarsnes, J. V., "Wave impact on a horizontal elastic plate," Journal of Marine Science and Technology, Vol. 2, No. 2, 1997, pp. 87-100.

[11] Kvalsvoldand, J., and Faltinsen, O. M., "Hydroelastic modeling of wet deck slamming on multihull vessels," Journal of ship Research, Vol. 39, No. 3, 1995, pp. 225-239.

[12] Khabakhpasheva, T., "Impact of a surface wave on an elastic hull," Fluid Dynamics, Vol. 41, No. 3, 2006, pp. 424-433.

[13] Korobkin, A., Gueret, R., and Malenica, Š., "Hydroelastic coupling of beam finite element model with Wagner theory of water impact," Journal of Fluids and Structures, Vol. 22, No. 4, 2006, pp. 493-504.

[14] Lu,           C., He, Y., and Wu, G., "Coupled analysis of nonlinear interaction between fluid and structure during impact," Journal of fluids and structures, Vol. 14, No. 1, 2000, pp. 127-146.

[15]      Stenius, I., Rosén, A., and Kuttenkeuler, J., "Explicit FE-modelling of hydroelasticity in panel-water impacts," International Shipbuilding Progress, Vol. 54, No. 2-3, 2007, pp. 111-127.

[16]      Maki, K. J., Lee, D., Troesch, A. W., and Vlahopoulos, N., "Hydroelastic impact of a wedge-shaped body," Ocean Engineering, Vol. 38, No. 4, 2011, pp. 621-629.

[17]      Piro, D. J., and Maki, K. J., "Hydroelastic analysis of bodies that enter and exit water," Journal of Fluids and Structures, Vol. 37, 2013, pp. 134-150.

[18]      Zamanirad, S., Seif, M. S., Tabeshpur, M. R., and Yaakob, O., "Investigation of hydroelastic effect in analysis of high-speed craft," Ships and Offshore Structures, Vol. 11, No. 1, 2016, pp. 16-24.

[19]      Engle A., and Lewis, R., "A comparison of hydrodynamic impacts prediction methods with two dimensional drop test data," Marine structures, Vol. 16, No. 2, 2003, pp. 175-182.

[20] Huera-Huarte, F., Jeon, D., and Gharib, M., "Experimental investigation of water slamming loads on panels," Ocean Engineering, Vol. 38, No. 11-12, 2011, pp. 1347-1355.

[21]      Panciroli, R., and Minak, G., "Experimental evaluation of the air trapped during the water entry of flexible structures," ACTA IMEKO, Vol. 3, No. 3, 2014, pp. 63-67.

[22] Yan, F., Zhang, C., Sun, L., and Zhang, D., "Experimental study on slamming pressure and hydroelastic vibration of a flat plate during water entry," Journal of Coastal Research, Vol. 73, No. sp1, 2015, pp. 594-599.

[23] Tenzer, M., Moctar, O. E., and Schellin, T. E., "Experimental investigation of impact loads during water entry," Ship Technology Research, Vol. 62, No. 1, 2015, pp. 47-59.

[24]      Barjasteh, M., Zeraatgar, H., and Javaherian, M. J., "An experimental study on water entry of asymmetric wedges," Applied Ocean Research, Vol. 58, 2016, pp. 292-304.

[25]      Ghazizade-Ahsaee, H., and Nikseresht, A., "Numerical solution of the asymmetric water impact of a wedge in three degrees of freedom," China Ocean Engineering, Vol. 27, No. 3, 2013, pp. 313-322.

[26]      Korobkin, A., and Malenica, S., "Modified Logvinovich model for hydrodynamic loads on asymmetric contours entering water," in 20th Int. Workshop on Water Waves and Floating Bodies, Longyearbyen, Norway, May, 2005.

[27]      Semenov, Y. A., and Iafrati, A., "On the nonlinear water entry problem of asymmetric wedges," Journal of Fluid Mechanics, Vol. 547, 2006, pp. 231-256.

[28] Shams, A., Jalalisendi, M., and Porfiri, M., "Experiments on the water entry of asymmetric wedges using particle image velocimetry," Physics of Fluids, Vol. 27, No. 2, p. 027103, 2015.

[29]      Hua, J., Wu, J. L. and Wang, W. H., "Effect of asymmetric hydrodynamic impact on the dynamic response of a plate structure," Journal of Marine Science and Technology, Vol. 8, No. 2, 2000, pp. 71-77.

[30] Izadi, M., Ghadimi, P., Fadavi, M., and Tavakoli, S., "Hydroelastic analysis of water impact of flexible asymmetric wedge with an oblique speed," Meccanica, Vol. 53, No. 10, 2018, pp. 2585-2617.

[31]      Chekin, B., "The inclined entry of a thin wedge into an incompressible fluid," Journal of Applied Mathematics and Mechanics, Vol. 58, No. 3, 1994, pp. 487-492.

[32]      Moradi, H., Ranji, A. R., and Haddadpour, H., "Hydroelastic criterion for an inclined flat plate in vertical and oblique impacts," Applied Ocean Research, Vol. 79, 2018, pp. 173-183.

[33]      Moradi, H., Ranji, A. R., and Haddadpour, H., "Dynamic response of a flat plate subjected to compression force during vertical and oblique impacts with calm water," Engineering Structures, Vol. 176, 2018, pp. 697-706.

[34]      Reinhard, M., "Free elastic plate impact into water," University of East Anglia, 2013.

[35]      Reinhard, M., Korobkin, A., and Cooker, M. J., "Water entry of a flat elastic plate at high horizontal speed," Journal of Fluid Mechanics, Vol. 724, 2013, pp. 123-153.

[36]      Rao, S. S., "Vibration of continuous systems," John Wiley & Sons, 2007.

[37]      Faltinsen, O. M., "The effect of hydroelasticity on ship slamming," Philosophical Transactionsof the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 355, No. 1724, 1997, pp. 575-591.