[1] Simao, J., Lee, H. G., Aspinwall, D. K., Dewes, R. C., and Aspinwall, E. M., ‘‘Workpiece surface modification using electrical discharge machining,’’ International Journal of Machine Tools and Manufacture, Vol. 43, 2003, pp. 121-128.
[2] Chakraborty S., Kar S., and Dey V., ‘‘The phenomenon of surface modification by Electro discharge coating process: A review surface review and letters,’’ Vol. 25, No. 5, 2018.
[3] Kumar, S., Singh, R., Singh, T. P., and Sethi, B. L., “Surface modification by electrical discharge machining: A review,” Journal of Materials Processing Technology, Vol. 209, 2009, pp. 3675-3687.
[4] Bleys, P.H., Kruth, J. P., Lauwers, B., and Schacht, B., “Surface and sub-surface quality of steel after EDM,” Advanced Engineering Materials, Vol. 8, 2006, pp. 15-25.
[5] Murray J. W., Algodi S. J., Fay, M. W., Brown, P. D., and Clare, A. T., “Formation mechanism of electrical discharge TiC-Fe composite coatings,” Journal of Materials Processing Technology, Vol. 243, 2017, pp.143–151.
[3] Family, R. R., Family, M. X., and Family, M. J., ‘‘Fundamental studies of transition-metal sulfide catalytic materials,’’ In Advances in Catalysis, Vol. 40, edited by D. D., Eley, H., Pines, and W. O., Haag, Burlington, Mass, Academic press. 1994.
[6] هوشمند، رحمتالله، عایقها و فشار قوی، دانشگاه شهید چمران اهواز، 1387.
[7] Sharma, R., Singh, J., “Effect of powder mixed electrical discharge machining (PMEDM) on difficult-to-machine materials – a systematic literature review,” Journal of Manufacturing Science and Production, 2014, pp.1-24.
[8] Talla, G., “Powder-mixed electric discharge machining (PMEDM) of Inconel625,” National Institute of Technology Rourkela, PhD Thesis, 2016.
[9] فاضل، محمد، گرسیوز جزی، محمدرضا، بهرامزاده، سعید، بخشی، سعیدرضا، رمضانی، مظاهر، و بهرامیان، احمد، «بررسی تأثیر ذرات گرافیت و MoS2بر خواص تربیولوژیکی پوشش کامپوزیتی Ni-SiC در دماهای بالا»، مواد پیشرفته در مهندسی، سال ۳۴، شماره ١، 121-105، 1394.
[10] عظیمی ابرقویی، سعید، ساعتچی، احمد، و ابراهیمی کهریزسنگی، رضا، «استفاده از روشی نوین جهت بررسی خوردگی موضعی آلیاژهای آلومینیوم 2024، 7075 و 6061 در محیطهای شبهاتمسفر دریایی»، مجله مواد نوین، جلد 4، شماره 1، 82-69، 1392.
[11] Alwafi, Y. A., Bidin, N., Hussin, R., Shkhawat, M., and Gustiono, D., “Michrohardness evaluation of pure aluminum substrate after laser surface alloying with iron and copper,” Journal of Materials Science Engineering, Vol.B, No. 1, 2011, pp. 200-205.
[12] Jiru, W. G., Sankar, M. R., and Dixit, U. S., “Surface alloying of aluminum with copper using CO2 laser, laser based manufactuering,” 2015, pp. 107-116.
[13] Jiru, W. G., Sankar, M. R., and Dixit, U. S., “Laser surface alloying of copper, manganese and magnesium with pure aluminum substrate,” Journal of Materials Engineering and Performance, 2016.
DOI:10.1007/s1166-016-1922-x.
[14] Mabahali, L. A. B., Pitiyana, S. L., and Sacks, N. “Laser surface alloying of Aluminum with Ni and Sic powders,” Materials and Manufacturing Processes, Vol. 25, 2010, pp. 1397-1403.