[1] Lee, S. J., Lee, S. I., and Park, C. W., “Reducing the drag on a circular cylinder by upstream installation of a small control rod,” Fluid Dynamics Research, Vol. 34, 2004, pp. 233-250.
[2] Tian, L. M., Lu-quan, R., Qing-ping, L., Zhi-wu, H., and Xiao, J., “The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces,” Journal of Bionic Engineering, Vol. 4, No. 2 , 2007, pp. 109-116.
[3] Zhang, D. Y., Yue-Hao, L., Xiang, L. I., and Hua-Wei, C., “Numerical simulation and experimental study of drag-reducing surface of a real shark skin,” Journal of Hydrodynamics, Ser. B 23, No. 2, 2011, pp. 204-211.
[4] Fuss Franz, K., “The effect of surface skewness on the super /postcritical coefficient of drag of roughend cylinders,” Procedia Engineering, Vol. 13, 2011, pp. 284-289.
[5] Walsh, M. J., and Lindemann, A. M., “Optimization and application of riblets for turbulent drag reduction,” AIAA paper 84-0347, 1984.
[6] Walsh, M. J., “Riblets, in viscous drag reduction in boundary layers,” eds D. M. Bushnell & J. N. Hefner, New York, NY: AIAA. 1990, pp. 203–261.
[7] Choi, K.-S., “European drag-reduction research—recent developments and current status,” Fluid Dyn. Res. Vol. 26, 2000, pp. 325–335. (doi:10.1016/S0169-5983(99)00030-1)
[8] Bushnell, D. M., “Aircraft drag reduction—a review,” Proc. Inst. Mech. Eng. 217, 2003, pp. 1–18. (doi:10.1243/095441003763031789)
[9] Jiménez, J., “Turbulent flows over rough walls,” Annu. Rev. Fluid Mech. Vol. 36, 2004, pp. 173–196. (doi:10.1146/annurev.fluid.36.050802.122103)
[10] Bechert, D. W., Bruse, M., Hage, W., der Hoeven, J. G. T. V., and Hoppe, G., “Experiments on drag-reducing surfaces and their optimization with adjustable geometry,” J. Fluid Mech., Vol. 338, 1997,
pp. 59–87. (doi:10.1017/S0022112096004673)
[11] Bruse, M., Bechert, D. W., der Hoeven, J. G. T. V., Hage, W. and Hoppe, G., “Experiments with conventional and with novel adjustable drag-reducing surfaces. In Near-wall turbulent flows,”
eds R. M. C. So, C. G. Speziale & B. E. Launder, Amsterdam, The Netherlands:
Elsevier. 1993, pp. 719–738.
[12] Bechert, D. W., Bruse, M., Hage, W. and Meyer, R., “Biological surfaces and their technological application—laboratory and flight experiments on drag reduction and separation control,” AIAA paper 97-1960, 1997.
[13] Itoh, M., Tamano, S., Iguchi, R., Yokota, K., Akino, N., Hino, R. and Kubo, S., “Turbulent drag reduction by the seal fur surface,” Phys. Fluids 18, 065102, 2006. (doi:10.1063/1.2204849)
[14] Coustols, E., and Savill, A. M., “Turbulent skin-friction drag reduction by active and passive means: part I,” In Skin friction drag reduction. AGARD report 786, Neuilly-surSeine, France: AGARD, 1992, pp. 8.1–8.53.
[15] Debisschop, J. R., and Nieuwstadt, F. T. M., “Turbulent boundary layer in an adverse pressure gradient: effectiveness of riblets,” AIAA J. 34, 1996, pp. 932–937. (doi:10.2514/3.13170).
[16] Lee, S.-J., and Jang, Y.-G, “Control of flow around a NACA 0012 airfoil with a micro-riblet film.” J. Fluids Struct. Vol. 20, 2005, pp. 659–672. (doi:10.1016/j.jfluidstructs.2005.03.003).
[17] Viswanath, P. R., “Aircraft viscous drag reduction using riblets,” Prog. Aerosp. Sci. 38, 2002, pp. 571–600. (doi:10.1016/S0376-0421(02)00048-9)
[18] Szodruch, J., “Viscous drag reduction on transport aircraft,” AIAA paper 91-0685, 1991.
[19] Robert, J. F., “Drag reduction: an industrial challenge,” In Skin friction drag reduction,
GARD report 786, Neuilly-sur-Seine, France: AGARD.
[20] , 1992, pp. 2.1–2.15.
[21] Roskam, J., “Airplane design. Part VI: preliminary calculation of aerodynamic, thrust and power characteristics,” Ottawa, KS: Roskam Aviation and Engineering Corporation, 1987.
[22] David C., W., “Turbulence modeling for CFD,” La Canada, CA: DCW industries, Vol. 2, 1998.
[23] David, C. P., Marie, P., “Solid Works 2013 Tutorial,” SDC Publications, 2013.
[24] Meshing, Ansys 16.0 User’s Guide, Ansys Inc, 2015.
[25] Fluent, Ansys 16.0 User’s Guide, Ansys Inc, 2015.
[26] Wind Tunnel Test of the DREA Six Meter Long Submarine Model-Force Data Analysis, Ottawa, Department of Research and Development Canada-Atlantic, National Defense, Fall 1988.
[27] Karim, M. M., Rahman, M. M and Alim, M. A., “Computation of turbulent viscous flow around submarine hull using unstructured grid,” J. Ship Technol, Vol. 5, No. 1 , 2009, pp. 973-1423.