طراحی و شبیه سازی بازیابی حرارت اتلافی اگزوز موتور ایزوتای شناورGM برای تولید توان الکتریکی در محرک های انعطاف پذیر گرمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران

چکیده

در این مقاله، یک روش جدید برای بازیابی حرارت اتلافی اگزوز موتور ایزوتا شناورGM و تبدیل آن به الکتریسیته با استفاده از یک محرک انعطاف پذیر گرمایی ارائه خواهد شد. محرک انعطاف پذیر مورد نظر از 3 بازوی موازی شامل بازوهای گرم و سرد برای کنترل دما و تولید توان الکتریکی استفاده می کند. همچنین برای کنترل حرارت های اتلاقی از 3 عدد dimpel در کوتاه ترین بازو برای پایداری حرارتی استفاده شده است. به عبارت دیگر، هدف از مقاله حاضر توسعه‌ی یک روش انتقال حرارت غیر فعال (یا پسیو) و یک سیستم مولّد گرما به کار به منظور بازیابی حرارت اتلافی جهت تولید توان الکتریکی می باشد. طرح پیشنهادی دارای اندازه 40µm × 250µm بوده و در نرم افزار کامسول 2018 پیاده سازی و شبیه سازی شده است. نتایج شبیه سازی برای طرح پیشنهادی با ولتاژ 5 ولت و بیشینه دمای 550 کلوین در مقایسه با کارهای مشابه FOM قابل قبولی از خود ارائه میدهد و نسبت به بهترین طرح مقدار 3/2 برابر و نسبت به بدترین طرح مقدار 2700 برابر بهبود نشان می دهد.

کلیدواژه‌ها

موضوعات


[1] Liu, X., Deng, Y. D., Li, Z., & Su, C. Q. (2015). Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Conversion and Management, 90, 121-127.
[2] Remeli, M. F., Date, A., Orr, B., Ding, L. C., Singh, B., Affandi, N. D. N., & Akbarzadeh, A. (2016). Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy conversion and management, 111, 147-157.
[3] Zou, S., Kanimba, E., Diller, T. E., Tian, Z., & He, Z. (2018). Modeling assisted evaluation of direct electricity generation from waste heat of wastewater via a thermoelectric generator. Science of The Total Environment, 635, 1215-1224.
[4] Zhang, H., Kong, W., Dong, F., Xu, H., Chen, B., & Ni, M. (2017). Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management, 148, 1382-1390.
[5] Junior, O. H. A., Calderon, N. H., & de Souza, S. S. (2018). Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery. Energies, 11(6), 1-13.
[6] Patil, D. S., Arakerimath, R. R., & Walke, P. V. (2018). Thermoelectric materials and heat exchangers for power generation–A review. Renewable and Sustainable Energy Reviews, 95, 1-22.
[7] Ding, L. C., Akbarzadeh, A., Singh, B., & Remeli, M. F. (2017). Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction. Energy Conversion and Management, 135, 74-83.
[8] Shu, G., Zhao, J., Tian, H., Liang, X., & Wei, H. (2012). Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy, 45(1), 806-816.
[9] Yazawa, K., & Shakouri, A. (2011). Cost-efficiency trade-off and the design of thermoelectric power generators. Environmental science & technology, 45(17), 7548-7553.
[10] Remeli, M. F., Tan, L., Date, A., Singh, B., & Akbarzadeh, A. (2015). Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and management, 91, 110-119.
[11] Zheng, X. F., Liu, C. X., Yan, Y. Y., & Wang, Q. (2014). A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications. Renewable and sustainable energy reviews, 32, 486-503.
[12] Fleurial, J. P. (2009). Thermoelectric power generation materials: Technology and application opportunities. Jom, 61(4), 79-85.
[13] Li, G., Zhang, G., He, W., Ji, J., Lv, S., Chen, X., & Chen, H. (2016). Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array. Energy Conversion and Management, 112, 191-198.
[14] Li, G., Zhang, G., He, W., Ji, J., Lv, S., Chen, X., & Chen, H. (2016). Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array. Energy Conversion and Mana
[15] Cao, Q., Luan, W., & Wang, T. (2018). Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Applied Thermal Engineering, 130, 1472-1479.
[16] Remeli, M. F., Date, A., Orr, B., Ding, L. C., Singh, B., Affandi, N. D. N., & Akbarzadeh, A. (2016). Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy conversion and management, 111, 147-157.‌
[17] Sasaki, K., Horikawa, D., & Goto, K. (2015). Consideration of thermoelectric power generation by using hot spring thermal energy or industrial waste heat. Journal of Electronic Materials, 44(1), 391-398.‌
[18] Chen, J., Zuo, L., Wu, Y., & Klein, J. (2016). Modeling, experiments and optimization of an on-pipe thermoelectric generator. Energy conversion and management, 122, 298-309.‌
[19] Meng, F., Chen, L., Sun, F., & Yang, B. (2014). Thermoelectric power generation driven by blast furnace slag flushing water. Energy, 66, 965-972.‌
[20] Zheng, X. F., Liu, C. X., Boukhanouf, R., Yan, Y. Y., & Li, W. Z. (2014). Experimental study of a domestic thermoelectric cogeneration system. Applied Thermal Engineering, 62(1), 69-79.‌
[21] Lesage, F. J., & Pagé-Potvin, N. (2013). Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy conversion and management, 66, 98-105.‌
[22] Remeli, M. F., Tan, L., Date, A., Singh, B., & Akbarzadeh, A. (2015). Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and management, 91, 110-119.‌
[23] Date, A., Date, A., Dixon, C., & Akbarzadeh, A. (2014). Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy. Solar energy, 105, 656-668.‌
[24] Gouws, R., & Eilers, H. (2013). A review on thermoelectric cooling modules: Installation design, performance and efficiency.‌
[25] Ma, M., & Yu, J. (2014). An analysis on a two-stage cascade thermoelectric cooler for electronics cooling applications. International journal of refrigeration, 38, 352-357.
[26] Crane, D., LaGrandeur, J., Jovovic, V., Ranalli, M., Adldinger, M., Poliquin, E., ... & Maranville, C. (2013). TEG on-vehicle performance and model validation and what it means for further TEG development. Journal of electronic materials, 42(7), 1582-1591.
[27] Chen, J., Zuo, L., Wu, Y., & Klein, J. (2016). Modeling, experiments and optimization of an on-pipe thermoelectric generator. Energy conversion and management, 122, 298-309.
[28] Al-Zandi, M. H., Wang, C., Voicu, R., & Muller, R. (2018). Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsystem Technologies, 24(1), 379-387.
[29] Somà, A., Iamoni, S., Voicu, R., Müller, R., Al-Zandi, M. H., & Wang, C. (2018). Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsystem Technologies, 24(2), 1053-1060.
[30] Nakic, C., Bieker, J., Lämmle, D., Winterstein, T., Schlaak, H. F., Schaumann, G., & Abel, T. (2016, July). Development of an electrothermal micro positioning platform for laser targets with two degrees of freedom. In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) (pp. 1-5). IEEE.
[31] Lara-Castro, M., Herrera-Amaya, A., Escarola-Rosas, M., Vázquez-Toledo, M., López-Huerta, F., Aguilera-Cortés, L., & Herrera-May, A. (2017). Design and modeling of polysilicon electrothermal actuators for a MEMS mirror with low power consumption. Micromachines, 8(7), 203.
[32] Zhang, H., Xu, D., Zhang, X., Chen, Q., Xie, H., & Li, S. (2015). Model-based angular scan error correction of an electrothermally-actuated MEMS mirror. Sensors, 15(12), 30991-31004.
[33] Zhang, X., Zhou, L., & Xie, H. (2015). A fast, large-stroke electrothermal MEMS mirror based on Cu/W bimorph. Micromachines, 6(12), 1876-1889.
[34] Thangavel, A., Rengaswamy, R., Sukumar, P. K., & Sekar, R. (2018). Modelling of Chevron electrothermal actuator and its performance analysis. Microsystem Technologies, 24(4), 1767-1774.
[35] Wang, Z., Shen, X., & Chen, X. (2015). Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsystem Technologies, 21(11), 2307-2314.
[36] Han, F., Wang, W., Zhang, X., & Xie, H. (2016). Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers. Journal of Microelectromechanical Systems, 25(4), 750-760.