تخمین پارامتر شکل در طنین آکوستیکی با توزیع آماری k

نوع مقاله : مقاله پژوهشی

نویسندگان

1 محقق پردازش سیگنال

2 مهندسی کامپوتر، نرم افزار، دانشگاه آزاد اسلامی، تهران

چکیده

سامانه سوناری یکی از ابزارهای آشکارسازی متحرک های دریایی نظیر شناورهای تندرو است. در آشکارسازی شناورها، به علت سرعت بالای متحرک، سیگنال دریافتی، با نویزهای محیطی ترکیب می‌شود و بنابراین شناخت پارامترهای محیط برای سامانه لازم است. محیط زیر آب یک محیط پیچیده است که متاثر از عوامل فیزیکی مختلف بوده و به دلیل ماهیت غیر ایستان و غیر خطی پدیده‌ها، بررسی همه پارامترهای موثر بر موج صوتی، کاری بسیار دشوار یا ناممکن است. اما برای تحلیل پدیده های آکوستیکی، نظیر نحوه انتشار موج، نحوه تضعیف سیگنال در برخورد به سطوح مختلف و مدل‌سازی کانال، طبق تئوری‌های فیزیک و ریاضی، تحلیل‌های آماری مختلفی ارائه شدند. یکی از این مدل‌ها، مدل توزیع احتمال کا (K) است که در بررسی سیگنال طنین آکوستیکی زیرآب کاربرد دارد. در این مقاله، یک سناریوی کانال صوتی شبیه سازی شده و سیگنال طنین با توزیع کا تولید شده است. سپس از روی داده و بر اساس برازش منحنی تابع توزیع تجمعی آن، پارامتر توزیع کا با استفاده از الگوریتم بهینه‌سازی تخمین زده شده است. روش پیشنهادی با روشهای حداکثر تشابه، روش ممان و روش zlogz، مقایسه شده که نتایج تحلیل، برتری روش پیشنهادی را نسبت به دیگر روش‌ها نشان می دهد.

کلیدواژه‌ها

موضوعات


[1]    De Rango, Floriano, Fiore Veltri, and Peppino Fazio. "A multipath fading channel model for underwater shallow acoustic communications." 2012 IEEE International Conference on Communications (ICC). IEEE, 2012.  10.1109/ICC.2012.6364590.
[2]    Yang, Wen-Bin, and T. C. Yang. "Characterization and modeling of underwater acoustic communications channels for frequency-shift-keying signals." OCEANS 2006. IEEE, 2006, doi: 10.1109/OCEANS.2006.306981.
[3]    Ruiz-Vega, Fernando, et al. "Ricean shadowed statistical characterization of shallow water acoustic channels for wireless communications." arXiv preprint arXiv:1112.4410 (2011).
[4]    Abraham, Douglas A., and Anthony P. Lyons. "Simulation of non-Rayleigh reverberation and clutter." IEEE Journal of Oceanic Engineering 29.2 (2004): 347-362, doi: 10.1109/JOE.2004.828202.
[5]    Jakeman, Eo, and P. Pusey. "A model for non-Rayleigh sea echo." IEEE Transactions on antennas and propagation 24.6 (1976): 806-814.
[6]    Sangston, Kevin J., Fulvio Gini, and Maria S. Greco. "Coherent radar target detection in heavy-tailed compound-Gaussian clutter." IEEE Transactions on Aerospace and Electronic Systems 48.1 (2012): 64-77.
[7]    Therrien, Charles, and Murali Tummala. Probability and random processes for electrical and computer engineers. CRC press, 2018.
[8]    Ward, K. D., R. J. A. Tough, and Simon Watts. "Sea clutter: Scattering, the K distribution and radar performance." Waves in Random and Complex Media 17.2 (2007): 233-234.
[9]    Minghui, Zhang, and Sun Hui. "Simulation model of bottom reverberation signals for horizontal bistatic receiving array." 2008 IEEE Ultrasonics Symposium. IEEE, 2008, doi: 10.1109/ULTSYM.2008.0349.
[10]            Lingevitch, Joseph F., and Kevin D. LePage. "Parabolic equation simulations of reverberation statistics from non-Gaussian-distributed bottom roughness." IEEE Journal of Oceanic Engineering 35.2 (2010): 199-208.
[11]            Abraham, Douglas A., and Anthony P. Lyons. "Simulation of non-Rayleigh reverberation and clutter." IEEE Journal of Oceanic Engineering 29.2 (2004): 347-362.
[12]            Iskander, D. Robert, and Abdelhak M. Zoubir. "Estimation of the parameters of the K-distribution using higher order and fractional moments [radar clutter]." IEEE Transactions on Aerospace and electronic systems 35.4 (1999): 1453-1457.
[13]            Shui, Peng-Lang, Ming Liu, and Shu-Wen Xu. "Shape-parameter-dependent coherent radar target detection in K-distributed clutter." IEEE Transactions on Aerospace and Electronic Systems 52.1 (2016): 451-465.
[14]            Roberts, William JJ, and Sadaoki Furui. "Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm." IEEE Transactions on Signal Processing 48.12 (2000): 3303-3306.
[15]            Chalabi, Izzeddine, and Amar Mezache. "Estimating the K-distribution parameters based on fractional negative moments." 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15). IEEE, 2015.
[16]            Marhaban, Mohammad Hamiruce. "Estimation of K–Distributed Clutter by using Characteristic Function Method." Jurnal Teknologi (2008): 29â-40.
[17]            Wachowiak, Mark P., et al. "Estimation of K distribution parameters using neural networks." IEEE Transactions on Biomedical Engineering 49.6 (2002): 617-620.
[18]            Blacknell, D., and R. J. A. Tough. "Parameter estimation for the K-distribution based on [z log (z)]." IEE Proceedings-Radar, Sonar and Navigation 148.6 (2001): 309-312.
[19]            Abraham, Douglas A., and Anthony P. Lyons. "Novel physical interpretations of K-distributed reverberation." IEEE Journal of Oceanic Engineering 27.4 (2002): 800-813.
[20]            Laferriere, Alison Beth. K-distribution fading models for Bayesian estimation of an underwater acoustic channel. Diss. Massachusetts Institute of Technology, 2011.
[21]            Olson, Derek R., et al. "Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions." The Journal of the Acoustical Society of America 145.2 (2019): 761-774; https://doi.org/10.1121/1.5089892.
[22]            Joughin, Ian R., Donald B. Percival, and Dale P. Winebrenner. "Maximum likelihood estimation of K distribution parameters for SAR data." IEEE transactions on Geoscience and Remote Sensing 31.5 (1993): 989-999.
[23]            Tu, Fuquan, et al. "Hysteresis curve fitting optimization of magnetic controlled shape memory alloy actuator." Actuators. Vol. 5. No. 4. Multidisciplinary Digital Publishing Institute, 2016.
Pitha, J., and R. Norman Jones. "A comparison of optimization methods for fitting curves to infrared band envelopes." Canadian Journal of Chemistry 44.24 (1966): 3031-3050.