شبیه سازی و اعتبارسنجی تست های مانور استاندارد مدل کانتینربر KCS به روش دینامیک سیالات محاسباتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس دفتر طراحی شناورهای سطحی/پژوهشکده علوم وفناوری دفاعی شمال/دانشگاه صنعتی مالک اشتر

2 دانشگاه صنعتی مالک اشتر

چکیده

امروزه حمل و نقل دریایی در حال افزایش و احتمال تصادم شناورها در مناطق پر تراکم افزایش یافته است. در این راستا بهبود عملکرد مانور شناور بطور مستقیم روی اقتصاد و امنیت ناوبری اثر می‌گذارد. بنابراین مطالعه پارامترهای مانور، موضوعی الزامی در فرآیند طراحی کشتی است. در این مطالعه معتبرسازی نتایج بواسطه عدم قطعیت و تایید برای شناور مرجع KCS انجام شده است. شناور مرجع در عدد فرود 201/0 در حالت سه‌درجه آزادی شامل : سرج، هیو و پیچ و شرایط آب آرام مورد بررسی قرار گرفت. سپس به روش دینامیک سیالات محاسباتی نتایج مورد مقایسه قرار گرفت. تایید و اعتباربخشی طبق توصیه نامه ITTC بوسیله سه سطح شبکه‌بندی انجام و مقدار عدم قطعیت عددی نیز تخمین زده شد. مقدار عدم قطعیت کمتر از 12 درصد و خطای عددی نسبت به تجربی نیز کمتر از 6 درصد استخراج گردید. تطابق مناسبی بین نتایج عددی و آزمایشگاهی ارائه شد. به منظور مدلسازی جریان حول بدنه از مدل دو فازی VOF و مدل آشفتگی DES بهره گرفته شد. اثر پروانه به روش دیسک محرک و طی یک روند نمای در پاشنه شناور وارد گردید.

کلیدواژه‌ها

موضوعات


  1. [1]  A. B. o. Shipping, "Guide for Vessle Maneuverability," ed. Houston, 2017, p. 111.

    [2]  M. A. Abkowitz, "Lectures on ship hydrodynamics--Steering and manoeuvrability," 1964.

    [3]  M. Gertler and G. R. Hagen, "Standard equations of motion for submarine simulation," David w Taylor Naval Ship Research and Development Center Bethesda MD1967.

    [4]  J. Feldman, "DTNSRDC revised standard submarine equations of motion," DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP …1979.

    [5]  T. I. Fossen, Handbook of marine craft hydrodynamics and motion control: John Wiley & Sons, 2011.

    [6]  A. Ogawa and H. Kasai, "On the mathematical model of maneuvering motion of ship," International Shipbuilding Progress, vol. 25, pp. 306-3019, 1978 1980.

    [7]  H. Yasukawa and Y. Yoshimura, "Introduction of MMG standard method for ship maneuvering predictions," Journal of Marine Science and Technology, vol. 20, pp. 37-52, 2015.

    [8]  S. Abdel-Latif, M. Abdel-Geliel, and E. E. Zakzouk, "Simulation of ship maneuvering behavior based on the modular mathematical model," in International Conference on Aerospace Sciences and Aviation Technology, 2013, pp. 1-14.

    [9]  M. Araki, H. Sadat-Hosseini, Y. Sanada, N. Umeda, and F. Stern, "Improved Maneuvering-Based Mathematical Model for Free-Running Ship Motions in Following Waves Using High-Fidelity CFD Results and System-Identification Technique," in Contemporary Ideas on Ship Stability, ed: Springer, 2019, pp. 91-115.

    [10] A. Balagopalan, K. Tiwari, T. Rameesha, and P. Krishnankutty, "Manoeuvring prediction of a container ship using the numerical PMM test and experimental validation using the free running model test," Ships and Offshore Structures, vol. 15, pp. 852-865, 2020.

    [11] A. Hajivand and S. H. Mousavizadegan, "Virtual simulation of maneuvering captive tests for a surface vessel," International journal of naval architecture and ocean engineering, vol. 7, pp. 848-872, 2015.

    [12] Y. Jin, A. R. Magee, L. J. Yiew, and Y. Zheng, "Dynamic manoeuvres of KCS in waves using URANS computations with overset grids," in Journal of Physics: Conference Series, 2019, p. 012015.

    [13] J. Li, J. E. Martin, and P. M. Carrica, "Large-scale simulation of ship bubbly wake during a maneuver in stratified flow," Ocean Engineering, vol. 173, pp. 643-658, 2019.

    [14] A. H. Muhammad, M. A. Djabbar, and N. Yuniarsih, "Maneuvering performance of a ferry affected by rudder area and speed," The Indonesian Journal of Naval Architecture, vol. 1, 2013.

    [15] C. M. NOOR, K. SAMO, and W. W. NIK, "Ship manoeuvring assessment by using numerical simulation approach," 2012.

    [16] R. Rajita Shenoi, P. Krishnankutty, and R. Panneer Selvam, "Study of maneuverability of container ship with nonlinear and roll-coupled effects by numerical simulations using RANSE-based solver," Journal of Offshore Mechanics and Arctic Engineering, vol. 138, 2016.

    [17] G. Taimuri, J. Matusiak, T. Mikkola, P. Kujala, and S. Hirdaris, "A 6-DoF maneuvering model for the rapid estimation of hydrodynamic actions in deep and shallow waters," Ocean Engineering, vol. 218, p. 108103, 2020.

    [18] O. F. Sukas, O. K. Kinaci, and S. Bal, "Theorecticl background and application of MANSIM for ship maneuvering simulations," Ocean engineering, vol. 192, 2019.

    [19] H. Kim, H. Akimoto, and H. Islam, "Estimation of the hydrodynamic derivatives by RaNS simulation of planar motion mechanism test," Ocean engineering, vol. 108, pp. 129-139, 2015.

    [20] O. F. Sukas, O. K. Kinaci, and S. Bal, "System-based prediction of maneuvering performance of twin-propeller and twin-rudder ship using a modular mathematical model," Applied Ocean Research, vol. 84, pp. 145-162, 2019.

    [21] ع. آرانی و میراعلم, "بررسی عددی تأثیر دامنه و بسامد نوسان یک AUV روی مشتقات هیدرودینامیکی در حرکت خالص هیو," نشریه علمی-پژوهشی هیدروفیزیک, vol. 5.

    [22] عباسی, ثاراله, زینعلی, مرحمت, ولدی, "آنالیز حساسیت مانور پذیری یک وسیله زیرسطحی خودکنترل نسبت به تغییرات ضرایب جرم مجازی," مکانیک سازه ها و شاره ها, vol. 9, pp. 1-13, 2019.

    [23] ح. فرد, مسعود, ر. ورنوسفادرانی, محمود, "محاسبه عددی و تحلیلی گشتاور مانک در جریان لزج برای یک زیردریایی هوشمند در وضعیت سووی خالص درآزمایش PMM," مکانیک سازه ها و شاره ها, vol. 9, pp. 205-216, 2019.

    [24] ا. فروشانی, گ. کار, and محمد, "استخراج ضرایب هیدرودینامیک با استفاده از مانور مکانیزم حرکت صفحه ای به کمک دینامیک سیالات محاسباتی," مکانیک سازه ها و شاره ها, vol. 8, pp. 215-228, 2018.

    [25] Y. Liu, L. Zou, Z. Zou, and H. Guo, "Predictions of ship maneuverability based on virtual captive model tests," Engineering Applications of Computational Fluid Mechanics, vol. 12, pp. 334-353, 2018 2014.

    [26] A. C. Hochbaum, "Manoeuvring Committee Report & Recommendations," in 25th International Towing Tank Conference. Fukuoka, Japan, ed, 2008, pp. 14-20.

    [27] ITTC, "Recommended Procedures and Guidlines Practical guidelines for ship CFD applications," in 26th International Towing Tank Conference, ed, 2014

    1. 14-20.

    [28] I. STAR-CCM+, STAR-CCM+ Documentation, 2017.

    [29] S. S. Cook, "Effects of headwinds on towing tank resistance and PMM tests for ONR Tumblehome," 2011.

    [30] P. Spalart and S. Allmaras, "A one-equation turbulence model for aerodynamic flows," in 30th aerospace sciences meeting and exhibit, 1992, p. 439.

    [31] M. Shur, P. Spalart, M. Strelets, and A. Travin, "Detached-eddy simulation of an airfoil at high angle of attack," in Engineering turbulence modelling and experiments 4, ed: Elsevier, 1999, pp. 669-678.

    [32] F. Menter and M. Kuntz, "Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles," in The aerodynamics of heavy vehicles: trucks, buses, and trains, ed: Springer, 2004, pp. 339-352.

    [33] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin, "A new version of detached-eddy simulation, resistant to ambiguous grid densities," Theoretical and computational fluid dynamics, vol. 20, p. 181, 2006.

    [34] T. Tezdogan, Y. K. Demirel, P. Kellett, M. Khorasanchi, and O. Turan, "Full-Scale unsteady RANS CFD Simulations of ship behaviour and Performance in head sea due to Slow Steaming," Ocean Engineering, vol. 97, pp. 186-206, 2015.

    [35] V. Bertram, Practical Ship Hydrodynamics: Elsevier, 2012.

    [36] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method: Pearson Education, 2007.

    [37] A. I. o. Aeronautics and Astronautics, AIAA guide for the verification and validation of computational fluid dynamics simulations: American Institute of aeronautics and astronautics, 1998.

    [38] H.-c. SHEN, Z.-q. YAO, B.-s. WU, N. ZHANG, and R.-y. J. J. o. S. M. YANG, "A new method on uncertainty analysis and assessment in ship CFD [J]," vol. 14, pp. 1071-1083, 2010.

    [39] C. D. Simonsen, F. J. C. Stern, and fluids, "Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle on forces and moments," vol. 32, pp. 1325-1356, 2003.

    [40] S. Karami and R. H Goudarzi, "Verification and Validation Study of Computational Fluid Dynamics for KCS Container Ship Resistance Result Using Shear Stress Transport Turbulence Model," 2020.

    [41] R. P. ITTC and R. J. I. R. Procedures, "Guidelines: Practical Guidelines for Ship CFD Applications," vol. 7, pp. 02-03, 2011.

    [42] I. Q. Manual, "Uncertainty analysis in CFD uncertainty assessment methodology. The 22nd ITTC, Seoul and Shanghai," Report1999.

    [43] I. R. Procedures, "ITTC–Recommended Procedures-Performance, Propulsion 1978 ITTC Performance Prediction Method," in International Towing Tank Conference, 1999, pp. 7.5-02.

    [44] I. R. Procedures, "Uncertainty analysis in CFD, uncertainty assessment methodology and Procedures. ITTC-Quality

    Manual," in In Proceedings of the International Towing Tank Conference, Venice, Italy, 8–14 September 2002., 2002, pp. 7.5-02.

    [45] I. R. Procedures, "Uncertainty Analysis in CFD, Verification and Validation Methodology and Procedures.

    ITTC-Recommended Procedures and Guidelines, 7.5-03-01-01," in In Proceedings of the International Towing Tank Conference, Wuxi, China, 18 September 2017, 2017, pp. 7.5-02.

    [46] Yi. Liu, Lu. Zou, Zaojian. Zou, Haipeng. Guo,  "Predictions of ship maneuverability based on virtual captive model tests" in Engineering Applications of Computational Fluid Mechanics, Taylor & Francis 2018, pp. 334-353.