##[1] V. Ghaffari and P. Karimaghaee, "Performance and Stability Investigation of a line of sight based Guidance System in the Presence of Measurement Noise," Journal of Space Science and Technology, vol. 11, no. 1, pp. 31-40, 2018.##[2] S. Talole, A. Ghosh, and S. Phadke, "Proportional navigation guidance using predictive and time delay control," Control Engineering Practice, vol. 14, no. 12, pp. 1445-1453, 2006.##[3] D. Zhou and B. Xu, "Adaptive dynamic surface guidance law with input saturation constraint and autopilot dynamics," Journal of Guidance, Control, and Dynamics, vol. 39, no. 5, pp. 1155-1162, 2016.##[4] M. Guelman and J. Shinar, "Optimal guidance law in the plane," Journal of Guidance, Control, and Dynamics, vol. 7, no. 4, pp. 471-476, 1984.##[5] I.-J. Ha and S. Chong, "Design of a CLOS guidance law via feedback linearization," IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 1, pp. 51-63, 1992.##[6] J. Moon, K. Kim, and Y. Kim, "Design of missile guidance law via variable structure control," Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 659-664, 2001.##[7] H.-G. Kim and H. J. Kim, "Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view," IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 1, pp. 82-94, 2018.##[8] J. Guo, Y. Li, and J. Zhou, "A new continuous adaptive finite time guidance law against highly maneuvering targets," Aerospace Science and Technology, vol. 85, pp. 40-47, 2019.##[9] X. Chen and J. Wang, "Optimal control based guidance law to control both impact time and impact angle," Aerospace Science and Technology, vol. 84, pp. 454-463, 2019.##[10] Y. Sheng, Z. Zhang, and L. Xia, "Fractional-order sliding mode control based guidance law with impact angle constraint," Nonlinear Dynamics, vol. 106, no. 1, pp. 425-444, 2021.##[11] C. Wang, W. Dong, J. Wang, and J. Shan, "Nonlinear suboptimal guidance law with impact angle constraint: An SDRE-based approach," IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4831-4840, 2020.##[12] D. Zhou, C. Mu, and T. Shen, "Robust guidance law with L2 gain performance," Transactions of the Japan Society for Aeronautical and Space Sciences, vol. 44, no. 144, pp. 82-88, 2001.##[13] A. Saleem and A. Ratnoo, "Lyapunov-based guidance law for impact time control and simultaneous arrival," Journal of Guidance, Control, and Dynamics, vol. 39, no. 1, pp. 164-173, 2016.##[14] D. Zhou, S. Sun, and K. L. Teo, "Guidance laws with finite time convergence," Journal of Guidance, Control, and Dynamics, vol. 32, no. 6, pp. 1838-1846, 2009.##[15] G. Li, M. Xin, and C. Miao, "Finite-time input-to-state stability guidance law," Journal of Guidance, Control, and Dynamics, vol. 41, no. 10, pp. 2199-2213, 2018.##[16] T. Binazadeh, M. H. Shafiei, and E. Bazregarzadeh, "New approach in guidance law design based on finite-time partial stability theorem," Journal of Space Science and Technology, vol. 8, no. 1, pp. 1-7, 2015.##[17] V. Behnam Gol, I. Mohammad Zaman, A. Vali, and N. A. Ghahramani, "Guidance law design using finite time second order sliding mode control," Journal of Control, vol. 5, no. 3, pp. 36-44, 2011.##[18] S. Xiong, W. Wang, X. Liu, S. Wang, and Z. Chen, "Guidance law against maneuvering targets with intercept angle constraint," ISA transactions, vol. 53, no. 4, pp. 1332-1342, 2014.##[19] s. khankalantary, m. hajizadeh, heidari, azem, and h. mohammadkhani, "Impact Time Guidance Law against Maneuvering Targets Using Sliding Mode Control," Amirkabir Journal of Mechanical Engineering, vol. 53, no. 2, pp. 913-922, 2021.##[20] C. Wang, X. Ding, J. Wang, and J. Shan, "A robust three-dimensional cooperative guidance law against maneuvering target," Journal of the Franklin Institute, vol. 357, no. 10, pp. 5735-5752, 2020.##[21] Y. Ji, D. Lin, W. Wang, S. Hu, and P. Pei, "Three-dimensional terminal angle constrained robust guidance law with autopilot lag consideration," Aerospace Science and Technology, vol. 86, pp. 160-176, 2019.##[22] S. Ebadollahi, M. Madani, and M. Golestani, "Guidance Law based on LMI-based Robust Model Predictive Control to Obtain Optimal LOS for Flying Vehicle," Tabriz Journal of Electrical Engineering vol. 48, no. 4, pp. 1645-1652, 2019.##[23] V. Ghaffari, "Model predictive guidance law design in a two-dimensional guidance problem in presence of Input constraint," Aerospace Knowledge and Technology Journal, vol. 8, no. 2, pp. 169-178, 2020.##[24] L. Lin and J. J. Zhu, "Line-of-sight pure pursuit guidance stability analysis and design guideline for car-like autonomous ground vehicles," in Dynamic Systems and Control Conference, 2019.##[25] R. Rout and B. Subudhi, "Design of line-of-sight guidance law and a constrained optimal controller for an autonomous underwater vehicle," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 416-420, 2020.##[26] N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, "Advances in Line-of-Sight Guidance for Path Following of Autonomous Marine Vehicles: An Overview," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, doi: 10.1109/TSMC.2022.3162862.##[27] Z. Qian, W. Lyu, Y. Dai, and J. Xu, "A Consensus-Based Model Predictive Control with Optimized Line-of-Sight Guidance for Formation Trajectory Tracking of Autonomous Underwater Vehicles," Journal of Intelligent & Robotic Systems, vol. 106, no. 1, pp. 1-13, 2022.##[28] M. Zhang and J. Ma, "Adaptive fixed-time cooperative intercept guidance law with line-of-sight angle constraint," in International Conference on Mechatronics and Automation, 2019.##[29] G. M. Siouris, Missile guidance and control systems. Springer Science & Business Media, 2004.##