[1] Sajedi, S. M., and Ghadimi, P. Experimental and Numerical Assessment of the Effect of Transverse, Pointed Aft, and Re-entrant Vee Steps as well as Ventilation on Hydrodynamic Performance of Mono-hull Planing Crafts in Calm Water. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 46(3), pp.715–731, 2022. doi:https://doi.org/10.1007/s40997-022-00519-8.##[2] Najafi, A., Nowruzi, H., Ameri, M.J. and Karami, M. An experimental study of the wetted surfaces of two- stepped planing hulls. Ocean Engineering, 222, p. 108589, 2021. doi:https://doi.org/10.1016/j.oceaneng.2021.108589.##[3] Najafi, A., Nowruzi, H., and Ameri, M. J. Hydrodynamic assessment of stepped planing hulls using experiments. Ocean Engineering, 217, p.107939, 2020. doi:https://doi.org/10.1016/j.oceaneng.2020.107939.##[4] Nowruzi, H., and Najafi, A. An experimental and CFD study on the effects of different pre-swirl ducts on propulsion performance of series 60 ship. Ocean Engineering, [online] 173, pp.491–509, 2019.##[5] Najafi, A., Nowruzi, H., and Ghassemi, H. Performance prediction of hydrofoil- supported catamarans using experiment and ANNs. Applied Ocean Research, 75, pp.66–84, 2018. doi:https://doi.org/10.1016/j.apor.2018.02.017.##[6] Ghadimi, P., Sajedi, S. M., Ghadimi, A., and Sheikholeslami, M. R. Experimental and numerical probe into the effects of adding one and two steps to a mono-hull planing vessel on its performance in calm water. Scientia Iranica, 2021. doi:https://doi.org/10.24200/sci.2021. 57177.5101.##[7] Ghadimi, P., Sajedi, S. M., and Tavakoli, S. Experimental Study of the Wedge Effects on the Performance of a Hard-chine Planing Craft in Calm Water. Scientia Iranica, 0(0), 2018. doi:https://doi.org/10.24200/sci.2018.20607.##[8] Saraji, M. K., Aliasgari, E., Streimikiene, D. Assessment of the challenges to renewable energy technologies adoption in rural areas: a Fermatean CRITICVIKOR approach, Technical Forecasting and Social Change 189, 122399, 2023.##[9] Energy and Mineral Regulatory Commission (EMRC), https://emrc.gov.jo/, accessed on 10 Feb 2023 [in Arabic].##[10] Nchofoung, T.N., Fotio, H. K., Miamo, C. W. Green taxation and renewable energy technologies adoption: a global evidence, Renew. Energy Focus 44, 334–343 Volume2023ISSN 1755-0084, 2023. doi: 10.1016/j.ref.2023.01.010##[11] Erős, N., Török, Z., Hossu, C. A., Réti, K. O., Maloș, C., Kecskés, P., Morariu, S. D., Benedek, J., Hartel, T. Assessing the sustainability related concepts of urban devel- opment plans in Eastern Europe: a case study of Romania, Sustain. Cities Soc. 85, 104070 VolumeISSN 2210-6707, 2022. doi: 10.1016/j.scs.2022.104070##[12] Khan, A., Shah, I., Aziz, S., Waqas, M., Zaman, U. K. U., Jung, D. W. Numerical and Experimental Analysis of Drag and Lift Forces on a Bullet Head. Aerospace, 9, 816, 2022. https://doi.org/10.3390/ aerospace9120816##[13] Rahman, M. R. Computational Analysis of Aerodynamic Parameters for Supersonic Artillery Projectiles International journal of mechanical engineering. J. Mech. Civ. Eng, 6, 1–18, 2020.##[14] Croke, T. C., Thomas, F. O. Active and passive turbulent boundary-layer drag reduction, AIAA J. 56 (10), 3835– 3847, 2018.##[15] Cecil, S. L. Friction drag reduction of external flows with bubble and gas injection, Annu. Rev. Fluid Mech. 42, 183–203, 2009.##[16] Krope, A., and Lipus, L. C. Drag reducing surfactants for district heating, Appl. Therm. Eng. 30 (8), 833–838, 2010.##[17] Zheng, X. B., Jiang, N., and Zhang, H. redetermined control of turbulent boundary layer with a piezoelectric oscillator, Chin. Phys. B 25 (1), 014703, 2016.##[18] Wang, X. TRPIV Experimental research of drag reduction mechanism by a riblet surface, Tianjin University, Tianjin, 2017.##[19] White, C. M., and Mungal, M. G. Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev. Fluid Mech. 40, 235–256, 2008.##[20] Shokry, F., Abd Elfattah, M., El-Gayar, D. A., et al. Effect of drag reducing polymers and impeller geometry on the rate of mass Fig. 17 The relation between vortexes and.sc and heat transfer at the wall of a cylindrical stirred tank reactor in relation to catalytic reactor design, Alexandria Eng. J. 59 (1), 509–518, 2020.##[21] Lai, S. C. S. Mimicking nature: physical basis and artificial synthesis of the lotus-effect, University of Leiden, Friesland, 2003.##[22] Huey, J. C., Gene, E. K., Michael, S. F., et al, DRA for gas pipelining successful in gulf of mexico trial, Oil Gas J. 98 (23), 54–58, 2000.##[23] Mitchell Quinn, Dylan McGrath, Duncan C. Bell, Henry C. Bilinsky, Joseph Builth-Williams, Christoph Feichtinger, Peter A. Leitl, Andreas Flanschger and Shahfiq Shahjahan. "Advancements in Drag-Reducing Riblet Film Production for Aviation and Other Applications," AIAA 2022-0920. AIAA SCITECH 2022 Forum. January 2022.##[24] Hu, j., and Yao, Zh. Drag reduction of turbulent boundary layer over sawtooth riblet surface with superhydrophobic coat. Physics of Fluids 1 January, 35 (1): 015104, 2023. https://doi.org/10.1063/5.0132403##[25] Chan, Kevin, L. Skvortsov, A., and Ooi, A. Effect of straight riblets of the underlying surface on wall bounded flow drag, International Journal of Heat and Fluid Flow, Volume 102, 109160, ISSN 0142-727X, 2023. https://doi.org/10.1016/j.ijheatfluidflow.2023.109160. (https://www.sciencedirect.com/science/article/pii/S0142727X23000590).##[26] Chan, Kevin, L. Skvortsov, A., and Ooi, A. Effect of straight riblets of the underlying surface on wall bounded flow drag, International Journal of Heat and Fluid Flow, Volume 102, 109160, ISSN 0142-727X, 2023. https://doi.org/10.1016/j.ijheatfluidflow.2023.109160.##[27] Cafiero, G., and Iuso, G. Drag reduction in a turbulent boundary layer with sinusoidal riblets, Experimental Thermal and Fluid Science, Volume 139, 110723, ISSN 0894-1777, 2022. https://doi.org/10.1016/j.expthermflusci.2022.110723.##[28] Soleimani, Sh. and, Eckels, S. A review of drag reduction and heat transfer enhancement by riblet surfaces in closed and open channel flow, International Journal of Thermofluids, Volume 9, 100053, ISSN 2666-2027, 2021. https://doi.org/10.1016/j.ijft.2020.100053.Volume 9,2021, 100053, ISSN 2666-2027,##[29] Gordon, J. E. The new science of strong materials, or why you don’t fall through the fl oor, 2 nd Ed., Pelican–Penguin, London, UK 1976.##[30] Design and Nature II Comparing Design in Nature with Science and Engineering (Eds: M. W. Collins, C. A. Brebbia), WIT Press, Southampton, UK 2004.##[31] Learning from Nature How to Design New Implantable Biomaterials (Eds: R. L. Reis, S. Weiner), Kluwer Academic Publishers, Norwell, MA 2004.##[32] Bhushan, B. Philos. Trans. R. Soc, 367, 1445, 2009.##[33] Bhushan, B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, Springer-Verlag, Heidelberg, Germany 2012.##[34] Bulletproof Feathers How Science Uses Nature’s Secrets to Design Cutting Edge Technology, (Ed: R. Allen), Ivy Press, London 2010.##[35] Bio-Inspired Innovation and National Security (Eds: R. E. Armstrong, M. D. Drapeau, C. A. Loeb, J. J. Valdes), National Defense University Press, Washington, DC 2010.##[36] Bar-Cohen, Y. Biomimetics: Nature Based Innovation, CRC Press, Boca Raton, FL 2011.##[37] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge 1970.##[38] Blevins, R. D. Applied Fluid Dynamics Handbook, Van Nostrand- Reinhold, New York 1984.##[39] Standard Handbook for Aeronautical and Astronautical Engineers (Ed: M. Davies), McGraw-Hill, New York 2002.##[40] White, F. Viscous Fluid Flow, 3 rd ed., McGraw Hill, New York 2006.##[41] Fox, R. W. and McDonald, A. T. Introduction to Fluid Mechanics, 11 th Ed. John Wiley & Sons, New York 2011.##[42] Fu, Y.F., Yuan, C.Q. and Bai, X.Q. caramsurfaces. Biosurface and Biotribology, 3(1), pp.11–24, 2017. doi:https://doi.org/10.1016/j.bsbt.2017.02.001.##[43] Sayad Saravi, S., and Cheng, K. A Review of drag reduction by riblet and micro-textures in the turbulent boundary. European Scientific Journal, 9(33), 2013.doi:https://doi.org/10.19044/ESJ. 2013. V9 N33P.##[44] Boomsma, A., and Sotiropoulos, F. Direct numerical simulation of shark skin denticles in turbulent channel flow. Physics of Fluids 28, 035106, 2016.##[45] Bixler, G. D., and Bhushan, B. Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces. Advanced Functional Materials, 23(36), 4507–4528, 2013.https://doi.org/10.1002/adfm.201203683.##[46] Bliamis, C., Vlahostergios, Z., Misirlis, D., Yakinthos, K. Numerical Evaluation of Riblet Drag Reduction on a MALE UAV. 9, 218, Aerospace 2022. https://doi.org/10.3390/aerospace9040218##[47] Caretto L. S., Gosman A. D., Patnakar S. V., and Spalding, D. B. Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation, 1972.##[48] Bixler, G. D., and Bhushan, B. Biofouling: lessons from nature. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370(1967): p. 2381-2417, 2012.##[49] Heydarian, A., Rishehri, M., Dehghanian, A. and Kazemipour, A. Numerical Simulation of the Effects of Micro Riblets on Hydrodynamics Parameters of Planning Vessels. High Speed craft, 15(48), pp.42–50, 2016. [in Persian]##[50] Han, M., Lim, H. C., Jang, Y. G., Seung, S. L., Lee, S. J. Paper # 0-7803-7731-1, presented at 12 th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, MA 2003.##[51] Caram, J. M., Ahmed, A. Am. Inst. Aeronaut. Astronaut. J. 1991, 29, 1769.##[52] Sundaram, S., Viswanath, P. R., Rudrakumar, S. Am. Inst. Aeronaut Astronaut. J. 34, 676.##[53] Gu, Y., Fan, T., Mou, J., Wu, D., Zheng, S. and Wang, E. Characteristics and mechanism investigation on drag reduction of oblique riblets. Journal of Central South University, 24(6), pp.1379–1386, 2017.doi:https://doi.org/10.1007/s11771-017-3542-5.##[54] Rohr, J. J., Andersen, G. W., Reidy, L.W., Hendricks, E. W. A comparison of the dragreducingbenefits of riblets in internal and external flows, Exp. Fluids 13 (6), 361–368, 1992.