[1]-Surrisyad, H., & Wahyono. (2020). A Fast Military Object Recognition using Extreme Learning Approach on CNN. International Journal of Advanced Computer Science and Applications (IJACSA), 11(12), doi:10.14569/IJACSA.2020.0111227##[2]-Rath, B. K., & Mallick, D. (2018). Artificial Intelligence Applications in Military Systems and Their Influence on Sense of Security of Citizens. Procedia Computer Science, 125, 676-682.##[3]-Machine Learning in Military Applications Artificial Intelligence and Machine Learning in Naval Warfare, Yang, Z., & Li, Z. (2020). Deep learning for ship design: A review of applications and opportunities. Ocean Engineering, 200, 107028.##[4]-Lee, C., & Kim, H. (2019). Predictive modeling of ship performance using machine learning techniques. Journal of Marine Science and Engineering, 7(3), 83.##[5]-Wang, J., & Xu, J. (2018). Prognostics and health management of ships using machine learning techniques. Reliability Engineering & System Safety, 180, 1-13## [6]-Berkhahn, S.; Neuwaeiler, I.; Fuchs, L. Real-TimeWater Level Prediction Based on Artificial Neural Networks. In New Trends in Urban Drainage Modelling; Mannina, G., Ed.; UDM 2018. Green Energy and Technology; Springer: Cham, Switzerland, 2018; pp. 603–607. [CrossRef]##[7]- Madichetty, S.; Sridevi, M. Detecting Informative Tweets during Disaster using Deep Neural Networks. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 709–713. [CrossRef]##[8]- Ranjit, S.; Shrestha, S.; Subedi, S.; Shakya, S. Foreign Rate Exchange Prediction Using Neural Network and Sentiment Analysis. In Proceedings of the 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida (UP), India, 12–13 October 2018; pp. 1173–1177. [CrossRef]##[9]- Varma, A.; Sarma, A.; Doshi, S.; Nair, R. House Price Prediction Using Machine Learning and Neural Networks. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1936–1939. [CrossRef]##[10]- Lotfidereshgi, R.; Gournay, P. Speech Prediction Using an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5394–5398. [CrossRef]##[11]- Pietrow, D.; Matuszewski, J. Objects detection and recognition system using artificial neural networks and drones. In Proceedings of the 2017 Signal Processing Symposium (SPSympo), Jachranka, Poland, 12–14 September 2017; pp. 1–5. [CrossRef]##[12]-Yanke, G. Tying the knot with a robot: Legal and philosophical foundations for human–artificial intelligence matrimony. Ai Soc. 2020. [CrossRef]##[13]- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds Mach. 2018, 28, 689–707. [CrossRef] [PubMed]##[14]- Svenmarck, P.; Luotsinen, L.; Nilsson, M.; Schubert, J. Possibilities and Challenges for Artificial Intelligence in Military Applications. In Proceedings of the NATO Big Data and Artificial Intelligence for Military Decision Making Specialists’ Meeting, Bordeaux, France, 31 May 2018.##[15]- DARPA—Accelerating the Exploration of Promising Artificial Intelligence Concepts. Available online: https://www.darpa.mil/ news-events/2018-07-20a (accessed on 25 January 2021). [16]- Sanchez, S.L. Artificial Intelligence (AI) Enabled Cyber Defence. Available online: https://www.eda.europa.eu/webzine/issue14/cover-story/artificial-intelligence-(ai)-enabled-cyber-defence (accessed on 25 January 2021).##[17]- EMSA—European Maritime Safety Agency. Available online: http://www.emsa.europa.eu/ (accessed on 25 January 2021).##[18]- Rhodes, B.J.; Bomberger, N.A.; Seibert, M.; Waxman, A.M. Maritime situation monitoring and awareness using learning mechanisms. In Proceedings of the MILCOM 2005-2005 IEEE Military Communications Conference, Atlantic City, NJ, USA, 17–20 October 2005; pp. 646–652. [CrossRef]##[19]- Al Salam, M. Adaptive Resonance Theory Neural Networks. Available online: https://www.academia.edu/38067953/Adaptive_Resonance_Theory_Neural_Networks (accessed on 25 January 2021).##[20]-Mao, Z.; Massaquoi, S.G. Dynamics of Winner-Take-All Competition in Recurrent Neural Networks with Lateral Inhibition. IEEE Trans. Neural Netw. 2007, 18, 55–69. [CrossRef]##[21]- Iphar, C.; Ray, C.; Napoli, A. Data integrity assessment for maritime anomaly detection. Expert Syst. Appl. 2020, 147. [CrossRef]##[22]-Laxhammar, R. Anomaly detection for sea surveillance. In Proceedings of the 2008 11th International Conference on Information Fusion, Cologne, Germany, 30 June-3 July 2008; pp. 1–8.##[23]- Walck, C. Hand-Book on Statistical Distributions for Experimentalists; Universitet Stockholms: Stockholm, Swede, 2007; p. 119.##[24]- GeeksforGeeks—Gaussian Mixture Model. Available online: https://www.geeksforgeeks.org/gaussian-mixture-model/ (accessed on 25 January 2021).##[25]- Grefl, K.; van Steenkiste, S.; Schmidhuber, J. Neural Expectation Maximization. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Hong Kong, China, 4–9 December 2017; pp. 6694–6704. [CrossRef]##[26]- Pu, W. Shuffle GAN With Autoencoder: A Deep Learning Approach to Separate Moving and Stationary Targets in SAR Imagery.IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [CrossRef]##[27]- Fei, C.; Honghui, C.; Jianwei, M. Man-made Object Detection Based on Texture Clustering and Geometric Structure Feature Extracting. Int. J. Inf. Technol. Comput. Sci. (Ijitcs) 2011, 3, 9–16. [CrossRef]##[28]-The Future of Mine Countermeasures. Available online: https://fas.org/man/dod-101/sys/ship/weaps/docs/mcmfuture.htm (accessed on 25 January 2021).##[29]-THALES. The Future of Mine Warfare: A Quicker, Safer Approach. Available online: https://www.thalesgroup.com/en/unitedkingdom/news/future-mine-warfare-quicker-safer-approach (accessed on 25 January 2021).Electronics 2021, 10, 871 17 of 19##[30]- Song, Y.; Zhu, Y.; Li, G.; Feng, C.; He, B.; Yan, T. Side scan sonar segmentation using deep convolutional neural network. In Proceedings of the OCEANS 2017—Anchorage, Anchorage, AK, USA, 18–21 September 2017; IEEE: Piscataway, NJ, USA, 2017;pp. 1–4.IEEE Internet Things J. 2020, 7, 9773–9783. [CrossRef]##[31]- Ghanem, K.; Aparicio-Navarro, F.J.; Kyriakopoulos, K.G.; Lambotharan, S.; Chambers, J.A. Support Vector Machine for Network Intrusion and Cyber-Attack Detection. In Proceedings of the 2017 Sensor Signal Processing for Defence Conference (SSPD), London, UK, 6–7 December 2017; pp. 1–5. [CrossRef]##[32]-Kowalczyk, A. Support Vector Machines; Syncfusion: Research Triangle, NC, USA, 2017; pp. 25–26.##[33]-Wang, J.; Cao, L.; Shen, Y.; Zheng, G. Research on Design of Military Logistics Support System Based on IoT. In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing, China, 26–28 October 2018;pp. 829–832. [CrossRef]##[34]-Tortonesi, M.; Morelli, A.; Govoni, M.; Michaelis, J.; Suri, N.; Stefanelli, C.; Russell, S. Leveraging Internet of Things within the military network environment—Challenges and solutions. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 111–116. [CrossRef]## [35]-Lapan, M. Deep Reinforcement Learning Hands-on: Apply Modern RL Methods to Practical Problems of Chatbots, Robotics, Discrete Optimization, Web Automation, and More; Packt Publishing Ltd.: Birmingham, UK, 2020, ISBN 978-1-83882-004.##